Monedas disruptivas: atractivo financiero y tecnológico
PlumX
Palabras clave:
Análisis financiero, Análisis tecnológico, Bitcoin, Altcoin, Blockchain, Acciones, Mercado estadounidense, Mercado colombiano, Mercado bursátil, Comportamiento de mercadosSinopsis
El Centro de Estudios e Investigaciones en Desarrollo Regional (CEIDER) de la Facultad de Ciencias Económicas y Empresariales de la Universidad Santiago de Cali, coordina sus actividades de investigación en la línea de Ciencia, Tecnología e Innovación con responsabilidad social; su eje-centro de actividades se enmarca en el desarrollo regional, medio ambiente y sociedad, para el impulso de sus líneas de investigación en temas de sostenibilidad ambiental, gestión organizacional, responsabilidad social empresarial, contabilidad internacional, teoría y pedagogía contable, comercio internacional y competitividad. La siguiente compilación hace parte de un trabajo de investigación y colaboración de pares, que busca contribuir desde la academia para enriquecer la temática de las monedas disruptivas.
Capítulos
-
Prólogo
-
Relación entre la altcoin y el bitcoinanálisis de mayor liquidez
-
Un análisis sistémico a los aspectos importantes del colapso financiero en los estados unidos
-
Análisis fundamental referente a derivados de tasa de cambio y el índice de acciones colcap en colombia durante 2016 – 2017
-
El blockchain en el mercado estadounidense y su relación directa con la tecnología
-
Contratos de futuros de acciones individuales y su participación en el mercado colombiano
-
Comportamiento de acciones fang:análisis en el mercado estadounidense
-
Mercado bursátil en colombia:análisis y su incidencia macroeconómica
Descargas
Citas
Al-Shattarat, W. & Al-Shattarat, B. (2018). Charateristics of stocks that frequentley hit price limits: empirical evidence from japan. Journal of Developing Areas, 52(3), 97–108.
Arango, C. A., Bernal, J. F., Boada, A., & Barrera, M. M. (2018). Criptoactivos. Bogotá.
Becker, C. & Schmidt, W. M. (2015). How past market movements affect correlation and volatility. Journal of International Money and Finance, 50, 78–107. http://doi.org/10.1016/J.JIMONFIN.2014.09.003
Briere, M., Oosterlinck, K. & Szafarz, A. (2015). Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins. Journal of Asset Management, 16(61), 365–373. http://doi.org/10.2139/ ssrn.2324780 CFTC. (2017). A
CFTC Primer on Virtual Currencies CFTC.
Ciaian, P., Rajcaniova, M. & Kancs, d’Artis. (2016). The economics of BitCoin price formation. Applied Economics, 48(19), 1799–1815. http://doi.org/10.1080/00036846.2015.1109038
Ciaian, P., Rajcaniova, M. & Kancs, d’Artis. (2017). Virtual Relationships: Short- and Long-run Evidence from BitCoin and Altcoin Markets. JRC Working Papers in Economics and Finance. Ispra, Italia.
Ciaian, P., Rajcaniova, M., & Kancs, d’Artis. (2018). Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets. Journal of International Financial Markets, Institutions and Money, 52, 173–195. http://doi.org/10.1016/J.INTFIN.2017.11.001
Corbet, S., Lucey, B. & Yarovaya, L. (2017). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters. http://doi. org/10.1016/J.FRL.2017.12.006
Corbet, S., Meegan, A., Larkin, C., Lucey, B. & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28–34. http:// doi.org/10.1016/J.ECONLET.2018.01.004
Dagher, G. G., Mohler, J., Milojkovic, M. & Marella, P. B. (2018). Ancile: Privacy-preserving Framework for Access Control and Interoperability of Electronic Health Records Using Blockchain Technology. Sustainable Cities and Society. http://doi. org/10.1016/J.SCS.2018.02.014
Doukas, J. A. & Wang, L. (2014). Does the bonding effect matter in a more integrated capital market world? Journal of International Money and Finance, 47, 162–184. http://doi.org/10.1016/J. JIMONFIN.2014.05.022
El Economista. (2018). Francia y Alemania quieren regular al bitcoin.
Ethereum. (2017). ¿Qué es ethereum? - Ethereum.com.co.
Farell, R. (2015). An Analysis of the Cryptocurrency Industry. Wharton Research Scholars, 130.
Fernández Hurtado, S, R., Parra Johanna, E., H., Miranda María, Martínez, Martinez, L. A (2018). La evasión de impuesto como variable económica negativa para Colombia Tax Evasion as a negative economic variable for Colombia. Espacios.
Fiuza, G., De Sales, M., & Rocha, K. (2014). Brazilian regulatory interventions, volatility and contagion: a VIRF analysis/Intervencoes regulatorias, volatilidade e contagio: uma analise VIRF. Revista Brasileira de Financas, 12(3), 385–409.
Fry, J. & Cheah, E.-T. (2016). Negative bubbles and shocks in cryptocurrency markets. International Review of Financial Analysis, 47, 343–352. http://doi.org/10.1016/J.IRFA.2016.02.008
Gandal, N., Hamrick, J., Moore, T., & Oberman, T. (2018). Price manipulation in the Bitcoin ecosystem. Journal of Monetary Economics, 95, 86– 96. http://doi.org/10.1016/J.JMONECO.2017.12.004
García-Medina, A., Sandoval, L., Bañuelos, E. U. & Martínez-Argüello, A. M. (2018). Correlations and flow of information between the New York Times and stock markets. Physica A: Statistical Mechanics and Its Applications. http://doi.org/10.1016/J.PHYSA.2018.02.154
Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M. C. & Siering, M. (2014, April). Bitcoin - Asset or Currency? Revealing Users’ Hidden Intentions.
Jung, S. S. & Chang, W. (2016). Clustering stocks using partial correlation coefficients. Physica A: Statistical Mechanics and Its Applications, 462, 410–420. http://doi.org/10.1016/J.PHYSA.2016.06.094
Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. http://doi. org/10.1016/J.ECONLET.2017.06.023
Kim, Y., Kim, T.-H. & Ergün, T. (2015). The instability of the Pearson correlation coefficient in the presence of coincidental outliers. Finance Research Letters, 13, 243–257. http://doi.org/10.1016/J. FRL.2014.12.005
Li, X., Qiu, T., Chen, G., Zhong, L.-X., & Wu, X.-R. (2017). Market impact and structure dynamics of the Chinese stock market based on partial correlation analysis. Physica A: Statistical Mechanics and Its Applications, 471, 106–113. http://doi.org/10.1016/J. PHYSA.2016.11.121
Moore, T., & Christin, N. (2013). Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk. In Lecture Notes in Computer Science (pp. 25–33). Springer, Berlin, Heidelberg. http://doi.org/10.1007/978- 3-642-39884-1_3
Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
Natarajan, V. K., Raja Singh, A. R., & Chidham Priya, N. (2014). Examining mean-volatility spillovers across national stock markets. Journal of Economics Finance and Administrative Science, 19(36), 55–62. http://doi.org/10.1016/j.jefas.2014.01.001
Ni, X., & Zhu, W. (2016). Short-sales and stock price crash risk: Evidence from an emerging market. Economics Letters, 144, 22–24. http:// doi.org/10.1016/J.ECONLET.2016.04.02
Nie, C.-X. (2017). Correlation dimension of financial market. Physica A: Statistical Mechanics and Its Applications, 473, 632–639. http://doi. org/10.1016/J.PHYSA.2017.01.045
Philip, M. (2017). 5 Things You Should Be Aware of CME Bitcoin Futures | Seeking Alpha.
Pieters, G., & Vivanco, S. (2017). Financial regulations and price inconsistencies across Bitcoin markets. Information Economics and Policy, 39, 1–14. http://doi.org/10.1016/J. INFOECOPOL.2017.02.002
Ripple. (2017). Qué diferencias hay entre Ripple y Bitcoin y porqué escoger XRP.
Roth, N. (2015). An Architectural Assessment of Bitcoin: Using the Systems Modeling Language. Procedia Computer Science, 44, 527– 536. http://doi.org/10.1016/J.PROCS.2015.03.066
Schwartz, D., Youngs, N., & Britto, A. (2014). The Ripple Protocol Consensus Algorithm.
SEC.gov. (2017). Investor Bulletin: Initial Coin Offerings.
Sharma, C., & Banerjee, K. (2015). A study of correlations in the stock market. Physica A: Statistical Mechanics and Its Applications, 432, 321–330. http://doi.org/10.1016/J.PHYSA.2015.03.061
Todea, A. (2016). Cross-correlations between volatility, volatility persistence and stock market integration: the case of emergent stock markets. Chaos, Solitons & Fractals, 87, 208–215. http://doi. org/10.1016/J.CHAOS.2016.04.006
Wang, G.-J., Xie, C., Chen, S., Yang, J.-J., & Yang, M.-Y. (2013). Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient. Physica A: Statistical Mechanics and Its Applications, 392(17), 3715–3730. http://doi.org/10.1016/J. PHYSA.2013.04.027